Differences between revisions 8 and 67 (spanning 59 versions)
Revision 8 as of 2013-06-04 11:15:53
Size: 4059
Editor: alders
Comment:
Revision 67 as of 2023-03-31 08:55:25
Size: 6989
Editor: stroth
Comment: Update introduction to reflect the 3 recommended python/module installations
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
#rev 2020-09-10 bonaccos

<<TableOfContents()>>
Line 3: Line 7:
We provide as many modules as possible that come with the current Debian GNU/Linux stable release. Nevertheless, that might not be enough for your needs since you may want to use the newest version of some module or one that is not part of Debian. We provide some modules that come with the current Debian GNU/Linux stable release, but usually this is because they are dependencies of an installed software. For python we strongly recommend to build own python environments with the desired python versions and modules.
Line 5: Line 9:
Since Python 2.6 there is an easy way to install missing or outdated modules in your home through `easy_install`. Our recommended way to install such environments is trough `conda`, expecially if you want to build a tool or toolchain where the setup will possibly be published in a paper. Alternatively, building an environment via `pyenv` is as possible.
Line 7: Line 11:
== How to use easy_install == For just quickly trying out some python tool a local installation of `pip` is recommended.
Line 9: Line 13:
 || Command line help: || `easy_install --help` ||
 || Online documentation: || http://packages.python.org/distribute/easy_install.html ||
 || Install a new module: || `easy_install --user MODULENAME` ||
 || Update an existing module: || `easy_install --user -U MODULENAME` ||
== Installing your own python environment with Conda ==
Line 14: Line 15:
Modules will be installed in your home within `~/.local/`. You do not need to adapt the `PYTHONPATH` environment variable since python will look for modules in this directory automatically. For a detailed overview for conda please follow to the [[Programming/Languages/Conda|Conda documentation]].
Line 16: Line 17:
== Installing other versions of Python == == Installing your own python versions with pyenv ==
Line 18: Line 19:
You can of course install other versions of Python in your home. A very comfortable way of doing that is by using [[https://github.com/utahta/pythonbrew|pythonbrew]]. You will find a howto on that website with detailled instructions how to use it. `Pyenv` is a collection of tools that allow users to manage different versions of python. In the simplest case you will need it to simply get an installation of python in your user space. Using that custom python installation, you will then be able to install additional modules in a very comfortable way, since you can install them in the "system path" (which is then somewhere within your home).
Line 20: Line 21:
== Installation of custom (non easy_install-able) Python modules in the home directory of a user == Documentation on `pyenv` can be found at https://github.com/pyenv/pyenv
Line 22: Line 23:
We are sometimes asked for newer version of Python modules. We do no longer build Python modules in SEPP as the requests for modules and their versions is too widespread to keep these modules maintainable. Here is a small howto for installing python 3.9.1 in your home:
Line 24: Line 25:
On this page we will list some bash-snippets that install some often requested modules in a users home.  * Install pyenv: {{{#!highlight bash numbers=disable
curl https://raw.githubusercontent.com/pyenv/pyenv-installer/master/bin/pyenv-installer -o pyenv-installer
}}}
 Check what the script is doing and then execute it: {{{#!highlight bash numbers=disable
bash ./pyenv-installer
}}}
 You can remove the installer file afterwards.
 * Add the following lines to your `~/.profile` before sourcing ~/.bashrc`: {{{#!highlight bash numbers=disable
export PYENV_ROOT="$HOME/.pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init --path)"
}}}
 * In the `~/.bashrc`: {{{#!highlight bash numbers=disable
eval "$(pyenv init -)"
}}}
 * If you want to pyenv-virtualenv automatically (in the `~/.bashrc`): {{{#!highlight bash numbers=disable
eval "$(pyenv virtualenv-init -)"
}}}
Line 26: Line 44:
== numpy ==  * You need a new login shell for all settings to take effect (when logged in on a Desktop environment logoff and login again)
Line 28: Line 46:
{{{#!highlight bash  * Install some python version, e.g. for python 3.9.1: {{{#!highlight bash numbers=disable
env PYTHON_CONFIGURE_OPTS="--enable-shared" pyenv install 3.9.1
pyenv rehash}}}
 Note, that settting of `PYTHON_CONFIGURE_OPTS="--enable-shared"` is needed if you need to link against the libpython shared library.

 * Make sure that this new python version will be used when you run python. You only need to run this command once: {{{#!highlight bash numbers=disable
pyenv global 3.9.1}}}

 * In order to update `pyenv` run: {{{#!highlight bash numbers=disable
pyenv update}}}

=== Documentation of pyenv ===
 || Website of pyenv || https://github.com/pyenv/pyenv ||
 || Website of pyenv installer || https://github.com/pyenv/pyenv-installer ||

== Installation of a local pip ==
`pip` can be installed in a user's environment and work with the `python` version installed on the system. Every module will be installed for the user only in one location, there is no separation with virtual environments.<<BR>>
Set up a local pip installation with the following commands: {{{#!highlight bash numbers=disable
mkdir -p ~/.local/bin
export PYTHONUSERBASE=~/.local
export PIP_USER=true
export PATH=$PYTHONUSERBASE/bin:$PATH
wget https://bootstrap.pypa.io/get-pip.py -O ~/.local/bin/get-pip.py
python3 ~/.local/bin/get-pip.py -vvv --user
}}}
Set default installations to the user's environment permanently (stored in `~/.config/pip/pip.conf`):
{{{#!highlight bash numbers=disable
pip config set install.user true
}}}

The exported environment variables will be lost after closing the shell. To enable local pip on demand, add the following function to your `.bashrc`: {{{#!highlight bash numbers=disable
function localpip {
    PYTHONUSERBASE=~/.local
    PATH=$PYTHONUSERBASE/bin:$PATH
    export PYTHONUSERBASE PATH
}
}}}
When you open a new shell, entering the command `localpip` will call the function and initialize your local pip installation.


== Installation of additional or newer modules with pip ==

Once you installed your custom python with the explanations given above, you are ready to install additional or newer modules the easy way. The usage of `pip` is very easy. The following command installs the module `numpy`.
{{{#!highlight bash numbers=disable
pip install numpy
}}}
while the next command would upgrade an existing installation of `numpy`
{{{#!highlight bash numbers=disable
pip install --upgrade numpy
}}}

For advanced usage of `pip`, please consult the manuals: https://pip.pypa.io/en/latest/

=== pip cache ===
`pip` uses a cache which is by default stored under `~/.cache/pip` or `$XDG_CACHE_HOME/pip` if it is set to a non-default location. This cache tends to fill up quickly and should occasionally be cleared with
{{{#!highlight bash numbers=disable
pip cache purge
}}}
It is advisable to set the cache's location to the local scratch disk to avoid using up quota:

 1. Create a directory for the cache: {{{#!highlight bash numbers=disable
mkdir -p /scratch/$USER/pip_cache
}}}
 1. Temporarily set the environment variable to tell `pip` to use a different cache location: {{{#!highlight bash numbers=disable
export PIP_CACHE_DIR=/scratch/$USER/pip_cache/
}}}
 or store the location permanently (in `~/.config/pip/pip.conf`): {{{#!highlight bash numbers=disable
pip config set global.cache-dir /scratch/$USER/pip_cache
}}}
 1. Check if the cache location is correct: {{{#!highlight bash numbers=disable
pip cache info
}}}


== Installation of Python modules that are not available in the archives of pip ==

Here we provide some shell script snippets for installing frequently asked modules which cannot be installed through `pip`. These scripts just provide an example installation. You might have to adapt some paths in order to make the module work correctly with the version of python you are using (e.g. if you run your custom python provided through `pyenv`).

=== nlopt ===
{{{#!highlight bash numbers=disable
Line 31: Line 128:
VERSION_NUMPY=1.6.0
installdir="${HOME}/opt"
builddir="/scratch/${USER}/build/numpy"
# Installation script for nlopt library
Line 35: Line 130:
export PYTHONPATH=${installdir}/lib/python VERSION=2.3
INSTALLDIR=$HOME/.local
BUILDDIR=/scratch/$USER/nlopt
Line 37: Line 134:
mkdir -p ${builddir} mkdir -p $BUILDDIR
cd $BUILDDIR
Line 39: Line 137:
cd ${builddir}
wget --output-document=numpy-${VERSION_NUMPY}.tar.gz \
        http://sourceforge.net/projects/numpy/files/NumPy/${VERSION_NUMPY}/numpy-${VERSION_NUMPY}.tar.gz/download
tar -xvvzkf numpy-${VERSION_NUMPY}.tar.gz
cd numpy-${VERSION_NUMPY}
python setup.py build --fcompiler=gnu95
python setup.py install --home=${installdir}
}}}
wget "http://ab-initio.mit.edu/nlopt/nlopt-${VERSION}.tar.gz"
tar -xvvzkf nlopt-${VERSION}.tar.gz
cd nlopt-${VERSION}
Line 48: Line 141:
== scipy == ./configure \
        --enable-shared \
        --prefix=$INSTALLDIR \
        OCT_INSTALL_DIR=$INSTALLDIR/octave/oct \
        M_INSTALL_DIR=$INSTALLDIR/octave/m/ \
        MEX_INSTALL_DIR=$INSTALLDIR/mex \
        GUILE_INSTALL_DIR=$INSTALLDIR/guile
Line 50: Line 149:
 || `Dependencies` ||
 || numpy ||

{{{#!highlight bash
#!/bin/bash

VERSION_SCIPY=1.6.0
installdir="${HOME}/opt"
builddir="/scratch/${USER}/build/scipy"

export PYTHONPATH=${installdir}/lib/python

mkdir -p ${builddir}

cd ${builddir}
wget --output-document=scipy-${VERSION_SCIPY}.tar.gz \
        http://sourceforge.net/projects/scipy/files/scipy/${VERSION_SCIPY}/scipy-${VERSION_SCIPY}.tar.gz/download
tar -xvvzkf scipy-${VERSION_SCIPY}.tar.gz
cd scipy-${VERSION_SCIPY}
python setup.py build
python setup.py install --home=${installdir}
}}}

== matplotlib ==

 * First you need to install scipy as shown above and make sure PYTHONPATH points to the new numpy installation.

{{{#!highlight bash
#!/bin/bash

VERSION_MATPLOTLIB=1.0.1
installdir="${HOME}/opt"
builddir="/scratch/${USER}/build/matplotlib"

export PYTHONPATH=${installdir}/lib/python

mkdir -p ${builddir}

cd ${builddir}
wget --output-document=matplotlib-${VERSION_MATPLOTLIB}.tar.gz \
        http://sourceforge.net/projects/matplotlib/files/matplotlib/matplotlib-${VERSION_MATPLOTLIB}/matplotlib-${VERSION_MATPLOTLIB}.tar.gz/download
tar -xvvzkf matplotlib-${VERSION_MATPLOTLIB}.tar.gz
cd matplotlib-${VERSION_MATPLOTLIB}
python setup.py build
python setup.py install --home=${installdir}
}}}

== nose ==

 * This module is required to run e.g. the numpy and scipy test suites.

{{{#!highlight bash
#!/bin/bash

VERSION_NOSE=1.0.0
installdir="${HOME}/opt"
builddir="/scratch/${USER}/build/nose"

export PYTHONPATH=${installdir}/lib/python

mkdir -p ${builddir}

cd ${builddir}
wget http://somethingaboutorange.com/mrl/projects/nose/nose-${VERSION_NOSE}.tar.gz
tar -xvvzkf nose-${VERSION_NOSE}.tar.gz
cd nose-${VERSION_NOSE}
python setup.py build
python setup.py install --home=${installdir}
make
make install

Python

We provide some modules that come with the current Debian GNU/Linux stable release, but usually this is because they are dependencies of an installed software. For python we strongly recommend to build own python environments with the desired python versions and modules.

Our recommended way to install such environments is trough conda, expecially if you want to build a tool or toolchain where the setup will possibly be published in a paper. Alternatively, building an environment via pyenv is as possible.

For just quickly trying out some python tool a local installation of pip is recommended.

Installing your own python environment with Conda

For a detailed overview for conda please follow to the Conda documentation.

Installing your own python versions with pyenv

Pyenv is a collection of tools that allow users to manage different versions of python. In the simplest case you will need it to simply get an installation of python in your user space. Using that custom python installation, you will then be able to install additional modules in a very comfortable way, since you can install them in the "system path" (which is then somewhere within your home).

Documentation on pyenv can be found at https://github.com/pyenv/pyenv

Here is a small howto for installing python 3.9.1 in your home:

  • Install pyenv:

    curl https://raw.githubusercontent.com/pyenv/pyenv-installer/master/bin/pyenv-installer -o pyenv-installer
    

    Check what the script is doing and then execute it:

    bash ./pyenv-installer
    
    You can remove the installer file afterwards.
  • Add the following lines to your ~/.profile before sourcing ~/.bashrc`:

    export PYENV_ROOT="$HOME/.pyenv"
    export PATH="$PYENV_ROOT/bin:$PATH"
    eval "$(pyenv init --path)"
    
  • In the ~/.bashrc:

    eval "$(pyenv init -)"
    
  • If you want to pyenv-virtualenv automatically (in the ~/.bashrc):

    eval "$(pyenv virtualenv-init -)"
    
  • You need a new login shell for all settings to take effect (when logged in on a Desktop environment logoff and login again)
  • Install some python version, e.g. for python 3.9.1:

    env PYTHON_CONFIGURE_OPTS="--enable-shared" pyenv install 3.9.1
    pyenv rehash
    

    Note, that settting of PYTHON_CONFIGURE_OPTS="--enable-shared" is needed if you need to link against the libpython shared library.

  • Make sure that this new python version will be used when you run python. You only need to run this command once:

    pyenv global 3.9.1
    
  • In order to update pyenv run:

    pyenv update
    

Documentation of pyenv

Installation of a local pip

pip can be installed in a user's environment and work with the python version installed on the system. Every module will be installed for the user only in one location, there is no separation with virtual environments.
Set up a local pip installation with the following commands:

mkdir -p ~/.local/bin
export PYTHONUSERBASE=~/.local
export PIP_USER=true
export PATH=$PYTHONUSERBASE/bin:$PATH
wget https://bootstrap.pypa.io/get-pip.py -O ~/.local/bin/get-pip.py
python3 ~/.local/bin/get-pip.py -vvv --user

Set default installations to the user's environment permanently (stored in ~/.config/pip/pip.conf):

pip config set install.user true

The exported environment variables will be lost after closing the shell. To enable local pip on demand, add the following function to your .bashrc:

function localpip {
    PYTHONUSERBASE=~/.local
    PATH=$PYTHONUSERBASE/bin:$PATH
    export PYTHONUSERBASE PATH
}

When you open a new shell, entering the command localpip will call the function and initialize your local pip installation.

Installation of additional or newer modules with pip

Once you installed your custom python with the explanations given above, you are ready to install additional or newer modules the easy way. The usage of pip is very easy. The following command installs the module numpy.

pip install numpy

while the next command would upgrade an existing installation of numpy

pip install --upgrade numpy

For advanced usage of pip, please consult the manuals: https://pip.pypa.io/en/latest/

pip cache

pip uses a cache which is by default stored under ~/.cache/pip or $XDG_CACHE_HOME/pip if it is set to a non-default location. This cache tends to fill up quickly and should occasionally be cleared with

pip cache purge

It is advisable to set the cache's location to the local scratch disk to avoid using up quota:

  1. Create a directory for the cache:

    mkdir -p /scratch/$USER/pip_cache
    
  2. Temporarily set the environment variable to tell pip to use a different cache location:

    export PIP_CACHE_DIR=/scratch/$USER/pip_cache/
    

    or store the location permanently (in ~/.config/pip/pip.conf):

    pip config set global.cache-dir /scratch/$USER/pip_cache
    
  3. Check if the cache location is correct:

    pip cache info
    

Installation of Python modules that are not available in the archives of pip

Here we provide some shell script snippets for installing frequently asked modules which cannot be installed through pip. These scripts just provide an example installation. You might have to adapt some paths in order to make the module work correctly with the version of python you are using (e.g. if you run your custom python provided through pyenv).

nlopt

#!/bin/bash

# Installation script for nlopt library

VERSION=2.3
INSTALLDIR=$HOME/.local
BUILDDIR=/scratch/$USER/nlopt

mkdir -p $BUILDDIR
cd $BUILDDIR

wget "http://ab-initio.mit.edu/nlopt/nlopt-${VERSION}.tar.gz"
tar -xvvzkf nlopt-${VERSION}.tar.gz
cd nlopt-${VERSION}

./configure \
        --enable-shared \
        --prefix=$INSTALLDIR \
        OCT_INSTALL_DIR=$INSTALLDIR/octave/oct \
        M_INSTALL_DIR=$INSTALLDIR/octave/m/ \
        MEX_INSTALL_DIR=$INSTALLDIR/mex \
        GUILE_INSTALL_DIR=$INSTALLDIR/guile

make
make install


CategoryLXSW

Programming/Languages/Python (last edited 2023-11-06 08:33:58 by stroth)