Size: 5370
Comment:
|
Size: 7062
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 5: | Line 5: |
The [[https://github.com/Chris-Engelhardt/data_sci_guide|Guided Data Science Resources]] is a community-sourced data science repo containing open source learning material. |
|
Line 18: | Line 20: |
=== Matching driver and toolkit versions === It is crucial to match the CUDA toolkit used in a project to the NVIDIA driver installed on the platform the project is supposed to run on. |
=== Matching toolkit versions to installed driver === The version of the NVIDIA driver installed on a platform limits the version range of CUDA toolkits working with the driver. The driver version is subject to operating update policies and cannot be changed by a user with normal privileges. It is not uniform on servers an desktop clients. |
Line 21: | Line 23: |
The CUDA compatibility document by NVIDIA contains a [[https://docs.nvidia.com/deploy/cuda-compatibility/index.html#binary-compatibility__table-toolkit-driver|dependency matrix]] matching driver and toolkit versions. | For your projects to work it is crucial to * check the driver version with `nvidia-smi` and * consult NVIDIA's [[https://docs.nvidia.com/deploy/cuda-compatibility/index.html#binary-compatibility__table-toolkit-driver|dependency matrix]] * to choose the toolkit version matching the driver installed on the platform you use. |
Line 24: | Line 29: |
Assuming the CUDA toolkit is to be installed in a [[Programming/Languages/Conda|conda environment]], available versions can be shown with | The easiest way to install the CUDA toolkit is by using [[Programming/Languages/Conda|conda]]. Available versions can be shown with |
Line 33: | Line 38: |
== Important reminder about working locally == If you're working locally, meaning on a managed Linux desktop or your private machine, always keep in mind the following: * '''The local GPU might not have enough memory for your project''' * '''The CUDA version you're using in your project environment might be too new for the driver installed locally''' |
|
Line 37: | Line 47: |
[[Programming/Languages/Conda|conda]] automatically installs this library if it's a dependency of another package installed. |
|
Line 38: | Line 50: |
[[https://pytorch.org/|pytorch]] is one of the main open source deep learning platforms in use at the time of writing this page. | [[https://pytorch.org/|pytorch]] is one of the main open source deep learning platforms in use at the time of writing this page. If you haven't done so already, read this [[Programming/Languages/Conda#Creating_an_environment_with_the_GPU_version_of_pytorch_and_CUDA_toolkit_10|installation example]]. |
Line 77: | Line 89: |
[[https://www.tensorflow.org/|tensorflow]] is another popular open source platform for machine learning. | [[https://www.tensorflow.org/|tensorflow]] is another popular open source platform for machine learning. If you haven't done so already, read this [[Programming/Languages/Conda#Creating_an_environment_with_the_GPU_version_of_tensorflow_and_CUDA_toolkit_10|installation example]]. |
Line 100: | Line 112: |
=== Managing GPU resources === If your code is going to run on a GPU cluster you need to make sure you [[https://www.tensorflow.org/guide/using_gpu|manage your use of GPU resources]] and use the following recommended configuration: {{{#!highlight python numbers=disable config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True sess = tf.Session(config=config) }}} |
Contents
Working with GPU or CPU in data sciences
Calculations in data sciences run on CPUs and/or GPUs. If you're using tools for or write code in this field, you will have to decide where your calculations are executed. The following information is supposed to help with that decision.
The Guided Data Science Resources is a community-sourced data science repo containing open source learning material.
Platform information
The D-ITET infrastructure managed by ISG uses NVIDIA GPUs and Intel CPUs exclusively. Available platforms are either managed Linux workstations with a single GPU or GPU clusters.
Information about these components can be shown by issuing the following commands in a shell:
lscpu
Shows information about the CPUs, most relevantly the number of CPU cores available in the line starting with CPU(s):
nvidia-smi
- Shows the NVIDIA driver version, the CUDA toolkit version and GPUs with their available memory
NVIDIA CUDA Toolkit
The CUDA toolkit provides a development environment for creating high performance GPU-accelerated applications. It is a necessary software dependency for tools used in GPU computing.
Matching toolkit versions to installed driver
The version of the NVIDIA driver installed on a platform limits the version range of CUDA toolkits working with the driver. The driver version is subject to operating update policies and cannot be changed by a user with normal privileges. It is not uniform on servers an desktop clients.
For your projects to work it is crucial to
check the driver version with nvidia-smi and
consult NVIDIA's dependency matrix
- to choose the toolkit version matching the driver installed on the platform you use.
Installing a specific toolkit version with conda
The easiest way to install the CUDA toolkit is by using conda. Available versions can be shown with
conda search cudatoolkit
And the version matching the driver can be installed with the following command in an active environment:
conda install cudatoolkit=10.0
Important reminder about working locally
If you're working locally, meaning on a managed Linux desktop or your private machine, always keep in mind the following:
The local GPU might not have enough memory for your project
The CUDA version you're using in your project environment might be too new for the driver installed locally
cuDNN library
The cuDNN library is a GPU-accelerated library of primitives for deep neural networks. It is another dependency for GPU computing. In order to use it NVIDIA asks you to read the Software Level Agreement for the library. The library is registered by ISG to be used for research at D-ITET. If you use the library differently you are obliged to register it yourself.
conda automatically installs this library if it's a dependency of another package installed.
pytorch
pytorch is one of the main open source deep learning platforms in use at the time of writing this page. If you haven't done so already, read this installation example.
A good starting point for further information is the official pytorch documentation.
Testing pytorch
To verify the successful installation of pytorch run the following python code in your python interpreter:
import torch
x = torch.rand(5, 3)
print(x)
The output should be similar to the following:
tensor([[0.4813, 0.8839, 0.1568], [0.0485, 0.9338, 0.1582], [0.1453, 0.5322, 0.8509], [0.2104, 0.4154, 0.9658], [0.6050, 0.9571, 0.3570]])
Environment and platform information
The following example shows how to gather information which you can use for example to decide whether to run your code on CPU or GPU:
import torch
import sys
print('__Python VERSION:', sys.version)
print('__pyTorch VERSION:', torch.__version__)
print('__CUDA VERSION')
print('__CUDNN VERSION:', torch.backends.cudnn.version())
print('__Number CUDA Devices:', torch.cuda.device_count())
print('__Devices:')
from subprocess import call
call(["nvidia-smi", "--format=csv", "--query-gpu=index,name,driver_version,memory.total,memory.used,memory.free"])
print('Active CUDA Device: GPU', torch.cuda.current_device())
print ('Available devices ', torch.cuda.device_count())
print ('Current cuda device ', torch.cuda.current_device())
tensorflow
tensorflow is another popular open source platform for machine learning. If you haven't done so already, read this installation example.
Choose from the available tutorials to learn how to use it.
Platform information
The following code prints information about the capabilities of the platform you run your environment on:
import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
Lines containing device:XLA_ show which CPU/GPU devices are available.
A line containing cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runtime version means the NVIDIA driver installed on the system you run the code is not compatible with the CUDA toolkit installed in the environment you run the code from.
An extensive list of device information can be shown with:
from tensorflow.python.client import device_lib
device_lib.list_local_devices()
The module tf.test contains helpful functions to gather platform information:
Managing GPU resources
If your code is going to run on a GPU cluster you need to make sure you manage your use of GPU resources and use the following recommended configuration:
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.Session(config=config)